Volume 7, Issue 1, June 2019, Page: 8-16
Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals
Abeer Fouad ElHagrassy, Conservation Department, Faculty of Archaeology, Fayoum University, Fayoum, Egypt
Received: May 15, 2019;       Accepted: Jun. 12, 2019;       Published: Jul. 13, 2019
DOI: 10.11648/j.ija.20190701.12      View  132      Downloads  19
Abstract
In the 19th-century Egypt had a strong earthquake leads to damage of several mural paintings. Mural paintings in Ali kadkhoda house (El Rabiemaya), in Cairo, Egypt were among the affected. According to these damages the mural paintings were pre-consolidated and covered by medical gauze and animal glue as an adhesive under extremely dangerous conditions. The traditional conservation methodology as hot water, and acrylics that carried on these mural paintings to strip the medical gauze and animal glue showed no positive results and caused removal of the pigments. Viable bacterial cells of Pseudomonas stutzeri, were used with Broth- animal glue media mixed with agar as a delivery system (gel material) to remove the polymerized animal glue only in 3hours at 35°C. The effectiveness of the bio-cleaning test was assessed. The results confirmed the success of this cleaning biotechnology to remove the animal glue as an organic matter without side effects on the mural paintings pigments. The Bio-restoration technique was safe, low-cost, non-invasive, time saving, and risk-free. Silver nano particles were used to sterilization the mural paintings after final step in the bio-restoration process to insure the death of bacterial cells. At the end, the mural paintings were characterized using SEM-EDX, FTIR, and XRD.
Keywords
Bio-Cleaning, Bio-restoration, Viable Cells, Pseudomonas stutzeri, Mural Paintings, Egypt
To cite this article
Abeer Fouad ElHagrassy, Bio-Restoration of Mural Paintings Using Viable Cells of Pseudomonas stutzeri and Characterization of These Murals, International Journal of Archaeology. Vol. 7, No. 1, 2019, pp. 8-16. doi: 10.11648/j.ija.20190701.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Zaki, A. (1987) Encyclopedia of the city of Cairo in a thousand years. El Anglo publication, P. 49.
[2]
Gomoiua, I., Mohanua, D., Radvanb, R., Dumbraviciana, M., Neagud SE, Cojocc LR, Enachec MI, Chelmusb A, Mohanud I.(2017) Environmental Impact on Biopigmentation of Mural Painting, Acta Physica Polonica, doi: 10.12693/APhysPolA.131.48.
[3]
Abdel-Haliem, M. E. F., Sakra, A., Ali, M. F., Ghalya, M. F., Sohlenkamp, C. (2013) Characterization of Streptomyces isolates causing color changes of mural paintings in ancient Egyptian tombs. Microbiol. Res. 168: 428-437.
[4]
Elhagrassy, A. F. (2018a) Isolation and characterization of actinomycetes from Mural paintings of Snu- Sert-Ankh tomb, their antimicrobial activity, and their biodeterioration Microbiological Research, 216: 47-55.
[5]
Veneranda, M., Taboada, N. P., Fdez-Ortiz, de Vallejuelo, S., Maguregui, M., Marcaida, I., Castro, K., Madariaga, J. M., Osanna, M. (2017) Biodeterioration of Pompeian mural paintings: fungal colonization favoured by the presence of volcanic material residues. Environmental Science and Pollution Research, 24: 9599-1969.
[6]
Elhagrassy, A. F. (2015) Bio cleaning Black Crust of culture heritage stone surface in Mohammed Ali Palace (Manial Palace) by using of Sulfate reducing Bacteria Desulfovibrio vulgaris. International Journal of New Technologies in Science and Engineering, 2: 12-19.
[7]
Helmi, F. M., Elmitwalli, H. R., Rizk, M. A., Elhagrassy, A. F. (2011) Antibiotic extraction as a resent biocontrol method for Aspergillus niger and Aspergillus flavus fungi in Ancient Egyptian mural paintings, Mediterranean Archaeology and Archaeometry, 11: 1-7.
[8]
Helmi, F. M., Elmitwalli, H. R., Elnagdy, S. M., ElHagrassy, A. F. (2016) Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis, Ecological Engineering 90: 367–371.
[9]
Lustrato, G., Alfano, G., Andreotti, A., Colombini, M. P., Ranalli. G. (2012.) Fast biocleaning of mediaeval frescoes using viable bacterial cells. International Biodeterioration & Biodegradation, 69: 51-61.
[10]
Roig, P. B. and Ranalli, G. (2014) The safety of biocleaning technologies for cultural heritage. Frontiers in Microbiology. doi: 10.3389/fmicb.2014.00155.
[11]
Elhagrassy, A. F. and Hakeem, A. (2018b) Comparative Study of Biological Cleaning and Laser Techniques for Conservation of Weathered Stone in Failaka Island, Kuwait. Scientific Culture 4: 43-50. doi: 10.5281/zenodo.121456.
[12]
Antonioli, P., Zapparoli, G., Abbruscato, P., Sorlini, C., Ranalli, G., Righetti, P. G. (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’’ cemetery. Proteomics, 5: 2453-2459.
[13]
Roig, B. P., Estellés, R. M., Regidor-Ros, J. L., Roig-Picazo, P, Ranalli, G. (2012) New frontiers in the microbial bio-cleaning of artworks. Picturer Restorer, 41: 37-41.
[14]
Ranalli, G., Alfano, G., Belli, C., Lustrato, G., Colombini, M. P., Bonaduce, I., Zanardini, E., Abbruscato, P., Cappitelli, F., Sorlini, C. (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol, 98: 73-83.
[15]
Sorlini, C., Cappitelli, F. (2008) The application of viable bacteria for the biocleaning of Cultural Heritage surfaces. Coalition, 15: 18-20.
[16]
Polo, A., Cappitelli, F., Brusetti, L., Principi, P., Villa, F., Giacomucci, L., Ranalli, G., Sorlini, C.(2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Environ Microbiol, 60: 1-14.
[17]
Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M. (2011) Silver Nanoparticles as Potential Antiviral Agents. Molecules, 16: 8894-8918.
[18]
Elhagrassy, A. F., Sameh, H. I., (2019) Novel Ag@ZnO core shell for Sterilization Mural paintings of King Tutankhamon Tomb (KV62), Velly of the King, Luxor, Egypt. (Under publication).
[19]
Mora, P. 1974. Causes of Deterioration of Mural paintings, International center for the study of the preservation and restoration of cultural property, Rome.
[20]
Harrison, S. M, Kaml, I., Prokoratova, V., Mazanek, M., Kenndler, E. (2005) Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bioanal Chem, 382: 1520-1526.
[21]
Sarmiento, A., Pérez-Alonso, M., Olivares, M., Castro, K., Martínez-Arkarazo, I., Fernández, L. A., Madariaga, J. M. (2011) Classification and identification of organic binding media in artworks by means of Fouriertrans form infrared spectroscopy and principal component analysis. Anal Bioanal Chem, 399: 3601–3611.
[22]
Wei, S., Schreiner, M., Rosenberg, E., Guo, H., Ma, Q. (2011) Identification of the binding media in Tang Dynasty Chinese wall paintings by using Py-GC/MS and GC/MS techniques. Int J Conserv Sci, 2: 77-88.
[23]
Jeszeová1, L., Bauerová-Hlinková, V., Baráth, P., Puškárová, A., Bučková, M., Kraková, L., Pangallo, D. (2018) Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal, Applied Microbiology and Biotechnology, 102: 6525–6536.
[24]
Roig, B. P., Regidor Ros, J. L., Montes Estellés, R. (2011a) Biolimpieza de pintura mural con bacterias. In: Proceeding of the XVIII Congreso Internacional Conservacióny Restauración de Bienes Culturales, Granada, 517-519.
[25]
Roig, B. P., Regidor Ros, J. L., Soriano Sancho, P., Doménech Carbó, M. T., Montes Estellés, R.. (2011b) Ensayos de biolimpieza con bacterias en pinturas murales. Arché 4-5. Editorial de la Universidad Politécnica de Valencia, Valencia, 115-122.
[26]
Tiano, P., Cantisani, E., Sutherland, I., Paget, J. M., (2006) Bioremediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage 7: 49-55.
[27]
Alfano, G., Lustrato, G., Belli, C., Zanardini, E., Cappitelli, F., Mello, E., Sorlini, C., Ranalli, G., (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. International Biodeterioration and Biodegradation 65: 1004-1011.
[28]
Webster, A., May, E., (2006) Bioremediation of weathered-building stone surface. Trends in Biotechnology 24: 255-260.
[29]
Giorgi, R., Baglioni, M., Berti, D., Baglioni, P., (2010) New methodologies for the conservation of cultural heritage: micellar solutions, microemulsions, and hydroxide nanoparticles. Accounts of Chemical Research, 43: 695-704.
[30]
Sajjad, S., and Nasseri, A. (2011) Synthesis and stabilization of Ag nanoparticles on a polyamide surface and its antibacterial effects. Int. Nano. Lett. 1: 22.
[31]
Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M. (2015) Silver Nanoparticles as Potential Antibacterial Agents, Molecules, 20: 8856-8874.
Browse journals by subject